
Using Regular Expressions with Madcap Flare: Putting 
Your Searches on Steroids 
Robert Delwood 

Regular expressions take find and replace to new levels. You can find text patterns, not just 
exact text. With patterns you can find, replace and even format all phone numbers, replace all 
span tags in a Flare document (“<span_1>my text</span>” with "my text"), find every e-mail 
address in a document all documents names, all dates formats, and words you’re not even 
sure how they’re spelled, like Jeffrey, or Jeff, Jeffery, and Geoffrey. Do each of these in a sin-
gle search. 

This ability, using a notation called regex, is described as find on steroids. Learn how Madcap 
Flare supports find using regular expressions. It’s not limited to just Flare. This works with any 
text based product. With other tools, such as NotePad++, you can make changes to one or 
more files at the same time. It’s versatile enough that writers and programmers alike can use it, 
and opens a new world to find and replace.

Everyone is familiar with the Find feature. It’s a 
ubiquitous feature that almost every application has 
built in, and that we’ve come to rely on frequently. 
Yet, for as simple and powerful the feature is, it 
seems few take full advantage of it. For instance, 
think about the times in the last month you’ve done 
a find within a document. Chances are it’s a com-
mon event. Now, think about the times in the last 
two months you’ve done a find on two or more doc-
uments at the same time, a multiple document find. 
This number is likely dramatically less than the first. 
And finally, in the last three months the number of 
times you’ve done a find and replace on two or 
more documents at the same time, a multiple docu-
ment replace. Likely, that’s almost zero. So why the 
precipitous fall between each case? I’d like to talk 
about that. This paper is about reviewing the lowly 
find feature and elevating it to a new, high status. 

I’ve always maintained that writers are about being 
a put upon group. We will never get the number of 
tools we really need. Tools here are defined as 
small applications or features within an application 
that help writers do their job. Those are the ones for 
the low level tasks, such as formatting text, listing 
files in a directory, and especially automating tasks. 
These tasks may be onetime events, unique to each 
writing group, even idiomatic for individual writers. 
It’s understandable then why we will never get those 
tools. They’re too minor or uncommon for 

companies to include them. Except they may not be 
minor or uncommon for the writer. All much more 
the reason to fully utilize the ones we have. And 
regular expressions should be added to our list. 

What Are Regular Expressions? 
Regular expressions, also called regex, are a pat-
tern-finding notation. It’s a find feature but instead of 
finding matches based on exact text, it can find pat-
terns. For example, we’re all used to conventional 
finds when you enter the exact text, such as ubiqui-
tous or idiomatic, and the find locates instances of 
that text exactly in the document. There may be 
slight options variations such as upper and lower 
case (Ubiquitous/ubiquitous), or whole word only, 
but those don’t change the point here. It’s still look-
ing for a letter to letter match. 

It’s pattern finding. Regex looks for patterns or 
specific groupings based on wild cards. As an ex-
ample, sometimes you want to find something but 
you don’t know what you’re looking for. Suppose the 
document is full of serial numbers, defined as six 
numeric characters in a single string, such as 
456923. You don’t know what the serial number is 
ahead of time, and perhaps you don’t even care. 
You just want to find them. That’s where wild cards 
come in. A wild card is where a single character 

2018 STC Technical Communication Summit
20–23 May 2018 • Orlando, Florida
© 2018 Society for Technical Communication

45



matches more than one character. In a conventional 
search, one character matches one character. For 
ubiquitous, u matches u, b matches b, and so on. 
With a wild card, one character matches multiple 
characters. The regex notation \d matches any nu-
meric digit, the characters 1 through 9 and 0. So in-
stead of having to specify the exact number, such 
as a conventional find would do, you could enter 
\d\d\d\d\d\d. The series of six numeric wild cards 
would match any six numeric characters. 

It’s a notation. Regex is considered a notation and 
not a computer language. It doesn’t contain any 
built in logic, any predefined functions, and can’t 
use language features such as If statements or 
looping. It uses keyboard characters to define the 
matching sequence. That means it also shares 
some of the letters and symbols in common. In the 
numeric wild card case of \d, it uses the backslash 
to differentiate this meaning from the conventional 
meaning of the letter d. 

However, regex does need to be run by something. 
It may be built into the application. Madcap Flare 
supports regex, as does the application NotePad++, 
an enhanced version of Windows’ venerable Note-
Pad. Word supports a wild card notation although 
it’s not generally considered as regex. All three sup-
port both find and replace wild card features. Other 
applications support just regex features, and may 
be needed for specialized or specific find issue. 

Regex is more of a guideline that an actual product 
or even a standard. Since applications have to sup-
port and run regex, there is some variation from the 
regex ideal. That means each application’s version 
is slightly different and will use different names. 
Grep, PCRE (Perl Compatible Regular Expres-
sions), and almost each language such as Microsoft 
.NET, UNIX, Java, and Python will have their own 
variations. The products are largely similar; perhaps 
80% are the same in each version. The differences 
will reflect the language’s concentration on different 
material such a string or mathematical processing. 

Even though regex isn’t a language, it can be used 
by languages. Almost every language supports re-
gex and can be used to make regex calls. In fact, 
the true power is regex is best seen in a language 
where repetition and processing can automate the 
process. Imagine having a scientific instrument that 
can collect thousands of inputs per second. An ap-
plication can loop through that data, perhaps into 
the billions, and find and catalog highly complex 
patterns. In a more practical example, imagine be-
ing able to go through a long document, finding 

every Web site reference, cataloging it, and report-
ing if the site is available or not. Regex is able to 
find the pattern match, and the language provides 
the repetition, logic, and automated support. 

How to Use Regular Expression 
Regex is a rich, versatile, and sometimes complex 
notation, so it’s not possible to cover every concept 
in this brief paper. Instead, I want to present funda-
mentals so that you can understand what’s possi-
ble, and then it’s just a matter of matching up terms 
to meet your needs. 

There are five important concepts: Literals, wild-
cards, range, repetition, and position. 

Literals. Literals are the keyboard characters. 
These are the letters, numbers, and symbols that 
we’re used to with conventional searches. You can 
use only literals for your regex searches. You’d lose 
the power of regex. This isn’t limited to the 96 char-
acters on a keyboard, but also includes the possible 
1,114,112 Unicode characters. 

Wildcards. Wildcards are single characters that can 
match multiple characters. This is mentioned earlier 
with the \d wildcard matching any numeric digit. Re-
gex has a rich set of wildcards. 

. Any character 

\s Any whitespace 

\S Any non-whitespace 

\d Any digit 

\D Any non-digit 

\w Any word character 

\W Any non-word character 

The period, for example, is the most versatile wild-
card because it matches any single character. For 
example, c.t would match the pattern c, any charac-
ter, and t. This includes the obvious ones of cat, cut, 
and the time abbreviation cst, but it also can find 
matches anywhere within a word such as citizens, 
Scottish, and classification. 

It’s useful to point out that any regex notation can 
be made into a literal by using what is called an es-
cape character. This is a backslash (\) immediately 
before the character. If you wanted to find the pe-
riod at the end of a sentence, you couldn’t really use 
the period notation, since that’s a wild card and 
would not only find a literal period but also any other 
character. In this case you’d use \. to indicate 

46 2018 STC Technical Communication Summit Proceedings

Robert Delwood



finding a literal period. The same is true for finding a 
backslash character, such as \\. 
However, often you’re not interested in finding just 
any character, you want to find a specific character 
or a kind of character. We’ve already seen the digit 
wild card of \d. The \D (with an uppercase D) finds 
any character other than a digit. \w finds any word 
character. That is any letter (which includes key-
board and Unicode) number, and underscore. \W is 
any character that is not considered a word charac-
ter. \s is any white space character. This is any 
space character and also tabs, line feed, carriage 
return, and new line characters. \S is any non-white 
space character or any character not included in the 
white space category. 

Range. Hopefully the power of the regex is started 
to be seen. Combining literals and wildcards adds a 
versatility that a conventional find can’t match. For 
example, finding any serial number is an improve-
ment over the conventional find. And you can com-
bine literals with wildcards to find more specific se-
rial numbers, such as using 1/d/d/d/d/d to find all 
serial numbers beginning with the number 1. Even 
so, just those two are still limited. With the range no-
tation, you can set a range or a group of characters 
to find. This notation finds any character inside hard 
brackets, ([]). This can be any set of characters, ex-
plicitly listed like [AEIOU]. It can be a range, with 
the first and last characters noted like [a-z] or [1-0] 
(zero being literally larger than 9). It can be both, 
such as [1-0ABC], which matches any number, or 
the upper case A, B, or C. You can use wild cards, 
so that [\dABC] matches the same characters as 
[1-0ABC]. The match is successful if any character 
occurrences within the hard bracket set. 

For example, [24680]/d/d/d/d/d finds any serial 
number beginning with 2, 4, 6, 8, or 0. [a-z] finds 
any lower case letter. [a-zA-Z] finds any letter, 
lower or upper case. And they can be mixed, too [a-
pr-z] finds any lower case letter except q. Notice the 
ranges are actually a-p, and again for r-z. 

Repetition. This is the ability to repeat a sequence. 
To find six digit serial numbers, we’ve been using 
the \d\d\d\d\d\d notation sequence. An obvious 
problem with that is there are six repeated values. 
Sequences like that should almost always be 
avoided. They’re hard to maintain, duplicate, and 
change. Regex uses the curly brackets ({}) to indi-
cate the number of times the immediately preceding 
notation should repeated. The serial number se-
quence can now be shortened to \d{6}. 

Regex provides two ways to provide repetition: ex-
plicit and implicit. 

Explicit repetition notation uses the curly brackets. If 
one number specified, then the pattern will be re-
peated exactly that number of times. So \d{6} as 
mention matches exactly six digits. This means a 
digit string of five or less will not be matched at all, 
and if the digit string is more than six, then only six 
will be matched. That would be the first six digits un-
less otherwise specified. If two numbers are inside 
the curly brackets, then the first number is the mini-
mum number needed to make a match, and the 
second one is the maximum number that will be 
matched. So \d{2,6} matches two to six digits in a 
row. If you’re looking for a user name, defined as six 
to 12 alphanumeric characters, you could use [a-
zA-Z0-9]{6,12}. This would fully match Pvt-
Dancer98, match the first 12 characters of Pri-
vateDancer98, and not match PvtDc at all. 

Implicit repetition notation finds sequences based 
on zero, one, or more occurrences. The notation im-
mediately preceding the following characters will at-
tempt to be found. 

? Finds zero or one occurrences 

* Finds zero or more occurrences

+ Finds one or more occurrences

For example, <li class would find all occurrences of 
that but only if there was exactly a single one space 
between the two elements. <li +class is more ver-
satile because it finds the same two elements but 
now it does so even if there are two or more spaces 
between them. Me will find the two letters adjacent 
to each other as in me, meliorate, and presentiment. 
M.e finds m and e but with any single character in
between them such as Ramses, climbed, and
squirmier. Changing it to m.*e, with the implicit as-
terisk notation now finds m and e but with any num-
ber of characters in between. This includes base-
ment, lachrymose, and militantness. The ? notation
(which has two uses and the second one is men-
tioned later) makes the proceeding character op-
tional. As examples, ou?r would find the English
and American spellings of the words colour/color,
and humour/humor.

Position. So far, most of the searches above will 
match the sequence anywhere in the word, whether 
it’s the entire word itself or a limited sequence within 
a word. For example, \d{6} matches 123456. It also 
not only matches the first six digits in the seven digit 
1234567 (123456) but also the last six digits in the 
same word (234567). This is a case conventional 

47

Using Regular Expressions with Madcap Flare: Putting Your Searches on Steroids

2018 STC Technical Communication Summit Proceedings



finds don’t often have to deal with. Most of those 
have an option to find whole word matches, perhaps 
on by default. Regex has two important position 
finding characters: 

^ Start of word 

$ End of word. 

The caret (^) will find matches that start at the be-
ginning of the word. This means ^\d{6} will only find 
a match if it’s at the beginning of the word, the 
123456 from 1234567 and not the second instance, 
234567. The dollar sign ($) is the opposite and 
matches only at the end of the word. \d{6}$ 
matches the sequence at the end of the word, 
234567 from 1234567, and not 123456. Using both 
will find the match only if it’s at the beginning and 
the end. That is, if it’s the entire word. ^\d{6}$ 
matches only the word 123456, and will not match 
anything from 1234567. 

When to Use Regex 
The building blocks are all in place now. Don’t worry 
about not understanding them yet – that comes with 
time. If all this seems excessive for just text, per-
haps it is. Most of the time when looking for text, 
you’ll know what you’re looking for. The serial num-
ber example may be more of an exception. That 
could be a reason why regex isn’t not more popular 
among writers. But content or body copy isn’t the 
only kind of text writers use. Regex’s real power can 
be applied to HTML and XML. Madcap Flare users 
write mostly in the XML editor, or the WYSIWYG 
editor. Many don’t think in terms of HTML or XML, 
and use those only in few cases. Regardless, we 
make an assumption that that is well formed and 
consistent, but this is far from the truth. For exam-
ple, anyone who’s ever worked with Flare’s behind 
the scene code understands how complicated and 
inconsistent it gets. Given the possible formations, 
the machine generated code, and especially if Word 
was ever involved, it seems impossible to find any-
thing. It’s not uncommon to see Flare’s HTML like: 

<p><span class="span_1">Who </span><span 
class="span_2">steals my purse</span><span 
class="span_1">steals trash; </span> <span 
class="span_Iago_reference">'tis some-
thing, nothing;</span></p> 
Example 1: Sample HTML source code for the fol-
lowing procedures. 

Clearly, this is messy code. Beyond some of our 
compulsion to have clean, organized code, this 

formatting may affect how the text displays, depend-
ing how span_1 is styled. Assuming that’s the case, 
it needs to be cleaned up. There are two cases that 
this is helpful in. 

The first case is that the span_1 and span_2 is un-
wanted and should be <span 
class="span_Iago_reference">. It may have been 
introduced during a file import process. In that case, 
we have the additional concern that there might be 
a span_3, span_4, and so on. Or it may have been 
intentional at one point but now you want it 
changed. In any case, we want to change all those 
spans to span_Iago_reference. A simple find and 
replace might work if we were sure there were only 
a span_1 and span_2. We want to catch all the in-
stances include unexpected ones. Regex simplifies 
this. You can find <span =  class="span_\d{1,}"> 
and replace with <span class="span_Iago_refer-
ence">. The find matches the literal part of <span 
class="span_ with any number of digits after that. It 
nicely covers unexpected instances like span_27 or 
span_999. 

The second case is that you don’t want those num-
bered span tags at all. The problem now is that the 
span tags are actually pairs of tags, with the open-
ing tag, text, and a closing tag. It may be easy 
enough to find and remove the opening span tag, 
I’ve already pointed out how to find those, but the 
search doesn’t find the closing tag. In addition, 
there’s nothing unique about the closing tags. That 
means you can’t differentiate one closing tag from 
another and you can’t just remove all </span> tags 
because there are some we want. For example, we 
want to keep <span class="span_Iago_refer-
ence"></span>. Again, regex can do that. It takes 
two expressions. One for the find and another for 
the replace. 

For the find segment, we’re going to craft an ex-
pression that includes both tags at the same time. 
That means it also includes the text between them, 
something we want to keep anyway. The find would 
be <span class="span_\d{1,}">(.*?)<\/span>. This 
expression can be broken up into three components 
of <span class="span_\d{1,}">, (.*?), and 
<\/span>. We’ve seen the first part of <span 
class="span_\d{1,}"> in the previous example. It 
finds text like span_1 or span_300. The last part 
catches the closing span. The interesting part is the 
middle expression of (.*?). The period was dis-
cussed as being a wild card that matches any char-
acter. The asterisk is the repetition marker for zero 
or more occurrences. So together .* finds zero or 
more occurrences of any character. You can see 

48 2018 STC Technical Communication Summit Proceedings

Robert Delwood



how that the expressions matches everything in be-
tween the two tags. 

The problem is how to specify which closing tag to 
end with. In our example, there are four closing 
span tags. At worst, the expression could find all the 

ing tag. We’re interested in the characters from the 
first opening tag through only the first closing tag. 
For that, regex introduces the concept of lazy and 
greedy searches. By default, all searches are 
greedy, which means it will try to get the greatest 
number of characters that match our pattern. In con-
trast, a lazy search attempts to find the match with 
the fewest number of characters. That’s the one we 
need. The question mark following a repetition nota-
tion indicates to make the search lazy. And, yes, 
they double up on meanings for characters The re-
sult here is that our search matches the first closing 
span tag after the opening span tag. That would be 
<span class="span_1">Who </span>. It’s hard to 
notice here but it includes a space after the word 
Who. 

For the replace segment, we’re going to selectively 
add back the body text we found. In the first case 
example, a replacement was made using fixed text, 
(<span class="span_Iago_reference">). Most of 
us are accustomed to using fix text with replaces. 
But here, it’s going to be based on the actual found 
text. That is marked in the find expression by the 
parentheses around the term, such as (.*?). These 
parentheses form what’s called a replacement 
group. If there’s only one set of parentheses, that’s 
the first replacement group, and noted in the find 
text as \1. If there’s a second set of parentheses 
that would be noted as \2, and so. So for the find 
text, use \1. This will replace the entire found text of 
<span class="span_1">Who </span> with Who , 
which still includes that space. Perform this opera-
tion three times, and the new HTML looks like: 

Who steals my purse steals trash; 
<span class="span_Iago_reference">'tis some-
thing, nothing;</span> 
Example 2: Cleaned up HTML. 

Much cleaner HTML. 

Making a Regex Find and Replace 
Flare supports regex for both find and replace, and 
single files and multiple files. 

To use regex in Flare for a single file: 

1. Within a Flare project, open a topic file,
paste the Example 1 text into the body of
the HTML in the Text Editor view.

2. Open Quick Replace (Home|Find and Re-
place|Quick Replace, or Ctrl-H). The Find
window opens in the top right of the topic
page.

3. Enter <span
class="span_\d{1,}">(.*?)<\/span> in the
Find textbox.

4. In the Filter Options button in the Find win-
dow, select Regular Expressions.

5. Click the Find Next arrow in the Find win-
dow to select the text. This highlights the
found text. While this step isn’t technically
necessary for a find and replace option, it
does confirm the find portion.

6. Click Replace Next in the Find window. This
makes the replacement and highlights the
next find text.

7. To speed this up, click Replace All. This re-
places the remaining instances.

To use regex in Flare for multiple files: 

1. Within a Flare project, paste the Example 1
text into the body of at least two HTML files
in the Text Editor view.

2. Open Find and Replace in Files
(Home|Find and Replace| Find and Replace
in Files, or Ctrl-Shift-F). The Find window
opens in the top right of the topic page. The
Find and Replace in Files panel opens to
the right.

3. Enter <span
class="span_\d{1,}">(.*?)<\/span> in the
Find textbox.

4. Enter \1 in the Replace With textbox.
5. Check Find in Source Code.
6. Select Regular Expressions from Search

Type.
7. Click Find Next. This highlights the next

found text.
8. Click Replace to make the selection.
9. To speed this up, click Replace All. This re-

places the remaining instances.

Other tools can make these changes too. One ex-
ample is NotePad++ (https://notepad-plus-
plus.org/). This is an improved version of the vener-
able Windows NotePad but adds dozens of addi-
tional features, including regex. This is not a unique 

49

Using Regular Expressions with Madcap Flare: Putting Your Searches on Steroids

2018 STC Technical Communication Summit Proceedings

characters from the first opening tag to the last clos-



product and to be clear there are plenty of similar 
ones. To use regex in NotePad++: 

1. Within a Flare project, paste the Example 1
text into the body of an HTML file in the Text
Editor view.

2. Launch NotePad++.
3. Paste the Example 1 text into the body of

the HTML into the default open document,
likely named New1.

4. To better the see text, you may use line
wrapping by selecting View|Wrap.

5. Open the Find dialog by clicking Ctl-F.
6. Select the Replace tab.
7. Select Regular expression in the Search

Mode panel.
8. Enter in Find What: <span

class="span_\d{1,}">(.*?)<\/span>
9. Enter in Replace with: \1
10. Click Find Next. The first match will get

highlighted.
11. Click Replace. The replaced text no longer

has the span tags.
12. To speed this up, click Replace All. This re-

places the remaining instances.

To do this for multiple pages: 

1. Within a Flare project, paste the Example 1
text into the body of at least two HTML files
in the Text Editor view.

2. Click Find in Files.
3. Make sure In all sub-folders is checked.
4. In the Directory textbox, enter a path, such

as D:\Connectors\NewProject1\Content, or
click the ellipsis button (…) to navigate to
the path.

5. Click Find All. This displays all the in-
stances found along the path.

6. This next step is the scary one. Be certain
that the replacement is correct for all the in-
stances. While typically you have to save
each changed file, when making multiple in-
stance changes, the replacements are
saved automatically. You would be correct
in thinking this could be a dangerous action,
and it is. If you’re connected to a source
control system like Git, check in, push and
pull all the files first before making global
changes. That way you can restore the en-
tire project should a mistake be made.

7. Click Replace in Files to make all the re-
placements. Don’t worry yet, you’ll be asked
for confirmation.

Final Thoughts 
Regex is a powerful and versatile find and replace 
tool. Because it is different than conventional find 
and replace, it requires thinking a little differently, 
that of patterns and not text. It is a rich language 
with nuisance. That means two things. First, you al-
most never want to read someone else’s expres-
sions. Depending how they craft them, it might be 
difficult to decipher. For example, [a-z0-9_\.-
]+@[\da-z\.-]+\.[a-z\.]{2,6} matches any e-mail ad-
dress, although it may take a moment to figure out 
why. Second, it is crafting. Writing the correct ex-
pression is tricky and at first time consuming. I rec-
ommend using an online regex tester, which shows 
the results of the searches in real time, to build your 
expression little by little. Then paste that expression 
into your application. 

This is not a tool to avoid or to be afraid of. I have 
shown with the samples above that a short expres-
sion can do a lot. And with multipage options you 
can accomplish even more in less time. I feel when 
you start seeing the value of this, you’ll also start 
seeing opportunities to use them. 

Author Contact Information 
Robert Delwood 
Lead API Documentation Writer 
WriteOnce.org 
Robert@WriteOnce.org 

Author Biography 
Robert Delwood is a programmer, writer, and pro-
grammer-writer currently in Chicago but formerly 
with NASA's Johnson Space Center in Houston. 
He's passionate about technical writing, procedural, 
conceptual, and for API documentation. With more 
than 18 years’ experience, he's written about and 
documented topics from Windows kernel-level de-
vice drivers and speech recognition APIs/SDKs for 
Microsoft, to help desk procedures and application 
manuals for the military. 

He has two specializations: API documentation and 
Microsoft Office automation. He’s documented APIs 
for more than a dozen years, and stresses the 

50 2018 STC Technical Communication Summit Proceedings

Robert Delwood



importance of upping everyone’s game from good 
documentation to great documentation. As a pro-
grammer-writer this includes writing original code 
samples, sample applications, and attention to de-
tail in API reference pages. 

For Microsoft Office automation he believes every 
writing team can use a programmer-writer. Custom-
ized tools can streamline any work process, in in-
stances from weeks to literally minutes. It can also 
improve quality and perform task considered impos-
sible by manual means. This can be accomplished 
internally, without involving the development depart-
ment. 

He's authored three books. The newest is about 
writing great API documentation and is due out in 
summer of 2018. The Secret Life of Word (XML 
Press, http://xmlpress.net) is about Word's automa-
tion for technical writers, non-programmers, 
knowledge workers, or anyone who wants to do 
more things quickly with Word. 

51

Using Regular Expressions with Madcap Flare: Putting Your Searches on Steroids

2018 STC Technical Communication Summit Proceedings


	TOC_AJM_10May2018
	Copyright
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	TOC: 
	ogies on the horizon: 
	benefits and we benefit: 
	Give in to the Power of the Dark Side Marketing and TC are Converging: 
	building in enough time 37: 
	Training Materials Must Provide: 
	Task details: 
	Logical: 
	Focused: 
	Analytical: 
	Organized: 
	teristics: 
	INT CONFERENCE ROOMDAY: 
	Figure 5 A brief sample of an AV script format: 
	ucts and companies they love: 
	single contractor for scripting and overall direction: 
	undefined: 
	undefined_2: 
	content through the workflow: 
	seeing opportunities to use them: 
	Figure 2 Sample results from a Smart Work  Assessment: 
	undefined_3: 
	Seo: 
	undefined_4: 
	undefined_5: 
	undefined_6: 
	arte: 
	with enhanced satisfaction: 
	business: 
	undefined_7: 
	up by the bot Figure 4: 
	to help: 
	what not to do: 
	welcoming and supportive Join us: 
	plications: 
	fill_1: 
	Stage: 
	IX Tasks: 
	Tools: 
	Target: 
	1: 
	User analysis task analysis requirement analysis: 
	Surveys Meetings In terviews Involvement: 
	2: 
	Design: 
	Storyboards Wireframes Mockups Prototypes: 
	3: 
	Development: 
	Content development tools: 
	Content deliverables: 
	4: 
	Testing: 
	Reviews and testing: 
	MS Excel Defect man agement tools Email: 
	5: 
	Release: 
	Content deliverables_2: 
	6: 
	Maintenance and im provement: 
	deliver experience through content deliveries: 
	on linguistics: 
	undefined_8: 


